Evergreen Water Works Lead and Copper Sampling Plan Requirements
Acknowledgement

City of Evergreen, Evergreen Water Works
Darrell Davis, Supt.
P.O. Box 229
Evergreen, AL 36401
251-578-1574

Population: 3630 2010 Census
1617 Customers

Laboratory: TTL, Inc.
3516 Greensboro Ave
Tuscaloosa, AL 35401
Alt:

All sources feed chlorine and fluoride (3)

All sites are Tier 1, 40 originally, reduced to 20
No lead service lines, main lines are pvc, ductile iron or cast iron. All service lines are copper or plastic tubing.

Sampling every 3 years, next sampling 2017. All previous testing was performed in compliance of the Lead/Copper Rule.

This plan should be provided to and reviewed by all persons responsible for lead and copper sampling.

If you should have any questions please contact the ADEM:
Luara Taylor 334-271-7820.
MEMORANDUM

Date: March 2, 2016

Attention: Drinking Water Manager

From: Dennis D. Harrison, Chief
ADEM Drinking Water Branch

Ref: Lead and Copper Materials Inventory

In the early 1990’s, as required by the Lead and Copper Rule (LCR), all public water systems (PWSs) should have completed a materials inventory as part of the PWS’s lead and copper sampling plan.

With respect to lead, the inventory should have identified whether the PWS’s distribution system had construction materials containing lead piping, lead solder, lead caulking, lead alloys, distribution mains with interior lead lining, and home plumbing with lead components. Also, the inventory should have included the location of lead service lines and other lead plumbing in the water system. With respect to copper, the inventory should have identified whether the PWS’s distribution system had construction materials containing copper piping, copper alloys, copper service lines, and home plumbing with copper components. In lieu of requiring submittal of this information, ADEM has required all affected PWSs to provide written certification that their lead and copper sampling was performed in compliance with the LCR.

In response to recent events in Flint, Michigan and other U.S. cities, on February 29, 2016 the USEPA sent a letter to the directors of all state environmental agencies urging the agencies to take certain near-term actions. One of those near-term actions was for the agencies to work with PWSs to increase transparency in implementation of the LCR by requiring PWSs to post on their public website and/or on the state agency’s website the materials inventory mentioned above.

ADEM will now require all affected PWSs to submit their lead and copper sampling plan (including the material inventory) to the Department by May 31, 2016. When you submit the information, please indicate whether you have a website and the date the information was posted on it. Regardless, ADEM will post the information on its eFile network to assure the public has access to it. If the information needs to be updated,
you should do this prior to submitting it to ADEM or posting it on your website. If you do not have, or cannot locate this information, you will need to generate it. For further information regarding the required contents of your LCR sampling plan, please contact Tom DeLoach at phone number (334) 271-7791, email address tsd@adem.state.al.us, or Laura Taylor at phone number (334) 271-7820, email address lat@adem.state.al.us.

ADEM fully expects the USEPA to take further actions related to the LCR. ADEM will endeavor to keep all affected PWSs in the state apprised of these developments as they occur and commits to work with all the state’s PWSs to assure the public health of all Alabamians is protected.
All samples were taken from Test 1 sites with lead soldered copper pipe.

I have worked with the Water Department for many years, being Superintendent for five years. We have replaced numerous service lines and have not found any with lead service lines. I questioned the previous Water Superintendent of 30 years service. He also stated he had not found any lead service lines in the system. I can't find any evidence of lead service lines in the system.

Clayton Davis
Water Superintendent
CITY OF EVERGREEN
Table of Contents

Section 1

- Lead & Copper Sample Site Plan Selection Criteria for Community Systems Page 4
- Public Water Supply Lead & Copper Sample Sites Form ... Page 5
- Lead & Copper Sampling Procedures .. Page 6
- Examples of Lead & Copper Sampling Instructions for Homeowner or Resident Page 7

Section 2

- Calculating the 90th Percentile During Initial, Follow-up, Routine & Reduced Monitoring Page 9
- 90th Percentile Summary Form ... Page 10

Section 3

- Making Changes to Sampling Site Locations .. Page 11
- Samples Site Identification & Certification (EPA Form 141-A Page 3) .. Page 12
- Lead & Copper Rule Reduced Monitoring Site Selection ... Page 13

Section 4

- Lead & Copper Consumer Notice & Certification Forms ... Page 14
- Consumer Notice Instructions for Community Public Water Supplies .. Page 15
- Monitoring of Corrosion Control Parameters ..
Section 1

Evergreen Water Works Lead and Copper Sample Site Plan Selection Criteria for Community Systems

All public water supplies must complete a materials evaluation of their system to identify their pool of sample sites. Samples must be collected from Tier 1 sites unless there are not sufficient sites, then Tier 2 sites may be used. If there are not sufficient Tier 1 and 2 sites then Tier 3 sites may be used.

Tier definitions are as follows:

- **Tier 1** – includes single family structures that;
 - Contain copper pipes with lead solder which was installed after 1982 or;
 - Contain lead pipes or;
 - Is served by a lead service line
 - *Multi-family structures may be used as a Tier 1 site when multi-family structures comprise at least 20% of the structures served by the water system.*

- **Tier 2** – includes multi-family structures and buildings that;
 - Contain copper pipes with lead solder which was installed after 1982 or;
 - Contain lead pipes or;
 - Is served by a lead service line

- **Tier 3** – Includes single family structures that contain copper pipes with lead solder which were installed prior to 1983

Tier Categories - Use the following to identify the Tier and category of each site:

Tier 1

A. Single family – copper pipe with lead solder constructed after 1982
B. Single family – lead pipes
C. Single family – lead service line
D. Multi-family - copper pipe with lead solder constructed after 1982
E. Multi-family – lead pipes
F. Multi-family – lead service line

Tier 2

A. Building – copper pipe with lead solder constructed after 1982
B. Building – lead pipes
C. Building – lead service line

Tier 3

A. Single family – copper pipe with lead solder constructed before 1983
Evergreen Water Works Lead and Copper Sample Sites

PWSID#: AL0000338 Number of Samples Required: 20

<table>
<thead>
<tr>
<th>NO.</th>
<th>Address</th>
<th>Tier Level</th>
<th>Selection Criteria</th>
<th>Primary or Alt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>104 N. Jordon St. (1985)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>02</td>
<td>102 N. Jordon St. (1986)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>03</td>
<td>408 Cemetery Ave. (1985)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>04</td>
<td>126 Salter St. (1987)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>05</td>
<td>112 N. Jordon St. (1985)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>06</td>
<td>406 Cemetery Ave. (1985)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>07</td>
<td>205 Knoxville Rd. (1985)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>08</td>
<td>401 MLK Dr. (1985)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>09</td>
<td>205 Cunningham Ct. (1987)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>10</td>
<td>135 Knoxville Rd. (1983)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>11</td>
<td>114 Highland Ct. (1987)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>12</td>
<td>203 Knoxville Rd. (1986)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>13</td>
<td>105 Stella St. (1984)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>14</td>
<td>141 Knoxville St. (1986)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>15</td>
<td>230 Cunningham Ct. (1988)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>16</td>
<td>114 N. Jordan St. (1985)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>17</td>
<td>379 Middle Rd. (1986)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>18</td>
<td>201 Knoxville Rd. (1985)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>19</td>
<td>139 Knoxville Rd. (1985)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>20</td>
<td>108 Jordan St. (1986)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
</tbody>
</table>
Evergreen Water Works Lead and Copper Sample Sites

PWSID#: AL0000338 Number of Samples Required: 20

<table>
<thead>
<tr>
<th>NO.</th>
<th>Address</th>
<th>Tier Level</th>
<th>Selection Criteria</th>
<th>Primary or Alt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>125 Railroad St. (1986)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>22</td>
<td>520 South Shipp St. (1984)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>23</td>
<td>423 Reynolds Ave (1984)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>24</td>
<td>104 Wall St. (1985)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>25</td>
<td>721 Perryman St. (1984)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>26</td>
<td>107 Finch St. (1983)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>27</td>
<td>101 Merriwood Dr. (1986)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>28</td>
<td>606 Magnolia Ave (1986)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>29</td>
<td>682 Factory St. (1986)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>30</td>
<td>129 Railroad St. (1986)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>31</td>
<td>229 Cunningham Ct. (1986)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>32</td>
<td>720 Factory St. (1986)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>33</td>
<td>206 McGehee St. (1986)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>34</td>
<td>133 Railroad St. (1986)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>35</td>
<td>632 South Shipp St. (1986)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>36</td>
<td>110 N. Jordan St. (1986)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>37</td>
<td>207 Knoxville Rd. (1985)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>38</td>
<td>137 Knoxville Rd. (1985)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>39</td>
<td>227 Cunningham Dr. (1987)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
<tr>
<td>40</td>
<td>106 N. Jordan St. (1985)</td>
<td>1</td>
<td>A</td>
<td>Primary</td>
</tr>
</tbody>
</table>
Updated List of Names, Address Tier 1 Sites for Lead and Copper
City of Evergreen (338)

<table>
<thead>
<tr>
<th>Original List Name, Address</th>
<th>New Name, Address</th>
<th>Year of Plumbing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Julia Greensboro 117 North Jordan St.</td>
<td>1. Margaret Thompson 104 Jordan St.</td>
<td></td>
</tr>
<tr>
<td>2. Lavanda Ray 119 North Jordan St.</td>
<td>2. Same 102 Jordan St.</td>
<td></td>
</tr>
<tr>
<td>3. Louise Bilbo 408 Cemetary Ave.</td>
<td>3. No Change</td>
<td></td>
</tr>
<tr>
<td>6. Ozetha Grace 406 Cometary Ave.</td>
<td>6. No Change</td>
<td></td>
</tr>
<tr>
<td>7. Rodger C. Griffin 215 Knoxville Rd.</td>
<td>7. Sara Ewing 205 Knoxville Rd.</td>
<td></td>
</tr>
<tr>
<td>8. Samuel Neal 401 Cary St.</td>
<td>8. Eric Simpson 401 MLK Dr.</td>
<td></td>
</tr>
<tr>
<td>9. Sharon Owens HCR 35 Box 2-CC</td>
<td>9. Al Etheridge 205 Cunningham</td>
<td></td>
</tr>
<tr>
<td>10. Brenda Taylor 135 Knoxville Rd.</td>
<td>10. Deloris Talley Same</td>
<td></td>
</tr>
<tr>
<td>11. Buck Faulkner P.O. Box 514</td>
<td>11. Fernando Oliver 114 Highland Ct.</td>
<td></td>
</tr>
</tbody>
</table>
12. Clayton Davis
 250 Knoxville Rd.

13. Deborah Ealum
 210 Stella St.

14. Dennis Montgomery
 209 Knoxville Rd.

15. Edgar Hempfeng Jr.
 216 Cunningham Dr.

16. Frances Daily
 107 West Jordan St.

17. Frank Salter
 P.O. Box 552

18. Ida Simpson
 211 Knoxville Rd.

19. Verna Turks
 139 Knoxville Rd.

20. Wayne Nevlous
 113 North Jordan St.

21. Allen Curry
 HCR 36 Box 380

22. Ann Pitts
 P.O. Box 103

23. Bessie Perryman
 421 Reynolds Ave

24. Keith McIntyre
 HCR 35 Box 2-D

12. James Marshall
 138 Knoxville Rd.

13. Mamie Woodson
 105 Stella St.

14. Same
 141 Knoxville Rd.

15. Thelma Hempfeng
 230 Cunningham Dr.

16. Same
 114 Jordan St.

17. Jimmy Bell
 379 Middle Rd.

18. Same
 201 Knoxville Rd.

19. Verna Gross
 Same

20. Melvin Dees
 108 Jordan St.

21. Same
 125 Railroad St.

22. Same
 520 South Shipp St.

23. Same
 423 Reynolds Ave.

24. Same
 104 Wall St.
25. Nellie M. Hines
P.O. Box 343

26. Lomax Cassidy
107 Finch St.

27. Terry Jackson
101 Merriewood Drive

28. Trent D. McDaniel
806 Magnolia Ave.

29. Voncile Baker
HCR 36 Box 398

30. Barbara Lee
381 G McMillan Dr.

31. Conrad Booker
HCR 36 Box 379

32. C. Fantory
HCR 36 Box 379

33. Ethel Tatum
206 McGehee St.

34. Felix Nettles
233 Reynolds Ave.

35. Harold Rodgers
P.O. Box 1082

36. Jane Grace
111 North Jordan St.

37. Mary Mason
217 Knoxville Rd.

25. Benjamin Macks
721 Perryman St.

26. Betty Welcher
Same

27. No Change

28. Inactive Account
606 Magnolia Ave.

29. Same
682 Factory St

30. Phyllis Houston
129 Railroad St.

31. Same
229 Cunningham Dr.

32. LaFayette Fantory
720 Factory St.

33. Peggy Bush
Same

34. Shakwanza Riley
211 Reynolds Ave.

35. Same
632 South Shipp St.

36. Corine Manually
110 Jordan St.

37. Laketa Fry
207 Knoxville Rd.
38. Pauline Pleasant
 137 Knoxville Rd.

39. Philip Owens
 HCR 35 Box 2-CCI

40. Patricia Grace
 115 North Jordan St.

38. No Change

39. Joy Owens
 227 Cunningham Dr.

40. Same
 106 Jordan St.
Lead and Copper Sampling Procedures

All lead and copper samples must be first-draw samples and must be 1 liter in volume. The water must be motionless (not used) in the plumbing system of each residence or building for a minimum of six hours. While the water cannot be used for more than six hours, do not collect samples from sites which have not been used for an extended period of time; such as a site which has had no water use for several days, i.e., a weekend.

First-draw residential samples shall be collected from the cold, hard water kitchen or bathroom sink only. First-draw nonresidential samples shall be collected from an interior, cold, hard water tap from which water is typically drawn for consumption.

Sampling sites must not include faucets which have point-of-use or point-of-entry treatment devices designed to remove inorganic contaminants. This includes devices such as filters, softeners, RO systems, etc.

First-draw samples may be collected by the system or the system may allow residents to collect samples after receiving instruction on the proper sampling procedures.

A water supply system shall collect each first-draw tap sample from the same sampling sites used in the previous round of sampling unless a change of sampling site is documented and submitted to the IDNR. (See section 3)

Sites and Situations to Avoid

Do not use

- A mop sink, outside faucet or a tap that is not generally used or intended for human consumption
- A site which is vacant (don’t make special arrangements to get access to site)
- A site which has undergone recent (within the last 6 months) plumbing improvements or changes including faucets at the specific sample location
- A tap that has any type of treatment
- A site where the owner or resident is uncooperative

Caution

The PWS is ultimately responsible for the sample result. Improper sampling by a resident may not be grounds for invalidation of a sample result by IDNR. The PWS should provide clear instructions to the residents and should thoroughly review the information and comments provided on the sample sheet prior to submitting the sample to the laboratory.
Example of Lead and Copper Sampling Instructions for Homeowner or Resident

Please read these instructions before opening the sample bottle

Sampling Requirements

- Do not rinse or overfill the bottle
- Samples should be collected from the cold, hard water kitchen or bathroom faucet. Do not use an outdoor faucet. If you have sampled before, please use the same kitchen or bathroom faucet you have used previously.
- Before sampling, run the faucet for 2-3 minutes during general use, such as filling a glass of water, brushing teeth, or washing face, then do not use water from the faucet for at least 6 hours. For single family homes, do not use water in the whole house during the no use period. For other sampling sites that cannot discontinue water use at the entire site for 6 hours, the faucet that will be sampled is tagged out for the minimum six hours.
- Collect the sample after at least 6 hours of no use before the water in the house or building is used for anything else.

Sampling Steps

1. Open the bottle and hold under the faucet.
2. Turn the cold, hard water on to a low flow and collect the first water that comes out of the faucet. (DO NOT RUN WATER FROM THE TAP BEFORE FILLING THE BOTTLE)
3. Fill the bottle to the shoulder.
4. Place lid on bottle and tighten cap securely.
5. Fill in label completely except for the sample ID.
6. Place bottle in shipping or pickup container.
7. Return the sample to the water supply as soon as possible.

Please note on the sample sheet and notify your water supply of the following conditions:
If any plumbing repairs or pipe replacements have been done in the last 5 years.
If you have a water softener or other home treatment or filter.

If you have any questions contact the following:

Name: Darrell Davis Phone #: 251-578-1574
LEAD – COPPER CUSTOMER SAMPLING INSTRUCTIONS

SAMPLE SITE PLAN #: __________

1. Sample should be collected from the kitchen faucet from homes or from the primary source used for drinking water in businesses.

2. Sample should be from the cold water side.

3. Sample should be collected after water has remained undisturbed in the lines for six (6) hours and not longer than eighteen (18) hours.

4. Sample should be stored in a cool place until it is picked up.

5. By signing below you are verifying that you have read and followed the instructions given above.

PLEASE SIGN THIS FORM AND RETURN WITH YOUR SAMPLE!

__

Customer Signature (Required)

Your scheduled Pick-Up Date: __________________________
Section 2

Calculating the 90th Percentile During Initial, Follow-up, Routine and Reduced Monitoring

If you collect 5 samples, calculate your 90th percentile as follows:

- Rank your samples in order of concentration (mg/l) from lowest to highest.
- Find the average of the two highest results by adding the results together and dividing by two.
- The resulting number (average) is the 90th percentile

EXAMPLE

<table>
<thead>
<tr>
<th>Sample Site #</th>
<th>Sample Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.001</td>
</tr>
<tr>
<td>2</td>
<td>0.001</td>
</tr>
<tr>
<td>3</td>
<td>0.006</td>
</tr>
<tr>
<td>4</td>
<td>0.008</td>
</tr>
<tr>
<td>5</td>
<td>0.014</td>
</tr>
</tbody>
</table>

0.008 + 0.014 = 0.022
0.022/2 = 0.011

90th percentile = 0.011 mg/l

This is the number to record on Form 141A.

If you collect 6 or more samples, calculate your 90th percentile as follows:

- Rank your samples in order of concentration (mg/l) from lowest to highest.
- Take the total number of samples collected and multiply by 0.90. The result will tell you which sample to record.
- If the number is not a whole number, round to the nearest whole number.
 - 12.7 would be rounded to 13.0 – 12.2 would be rounded to 12.0
- If the number is exactly in the middle of two whole numbers, round to the nearest even number.
 - 12.5 would be rounded to 12.0 – 13.5 would be rounded to 14.0

EXAMPLE IF YOU COLLECTED 10 SAMPLES

10 x 0.9 = 9

Sample #9 is the 90th percentile and should be recorded on Form 141A

<table>
<thead>
<tr>
<th>Sample Site #</th>
<th>Sample Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.001</td>
</tr>
<tr>
<td>2</td>
<td>0.001</td>
</tr>
<tr>
<td>3</td>
<td>0.001</td>
</tr>
<tr>
<td>4</td>
<td>0.001</td>
</tr>
<tr>
<td>5</td>
<td>0.001</td>
</tr>
<tr>
<td>6</td>
<td>0.004</td>
</tr>
<tr>
<td>7</td>
<td>0.005</td>
</tr>
<tr>
<td>8</td>
<td>0.006</td>
</tr>
<tr>
<td>9</td>
<td>0.008</td>
</tr>
<tr>
<td>10</td>
<td>0.010</td>
</tr>
</tbody>
</table>

The 90th percentile is 0.008 mg/l and should be recorded on Form 141A.

Please note these are examples only, you will have to insert your own results to determine your 90th percentile.
Copper Monitoring Results

Lead and Copper Monitoring Data Report

<table>
<thead>
<tr>
<th>Name and Address of Customer</th>
<th>Tier 1, 2, or 3</th>
<th>Lead Service Line Sample (Yes or No)</th>
<th>Date of Collection</th>
<th>Date of Analysis</th>
<th>Copper Results (mg/l)</th>
<th>Year of Plumbing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lead Monitoring Results
Lead and Copper Monitoring Data Report

System Name and PWSID # ____________________________
Monitoring Period ____________________________

<table>
<thead>
<tr>
<th>Name and Address of Customer</th>
<th>Tier 1, 2, or 3</th>
<th>Lead Service Line Sample (Yes or No)</th>
<th>Date of Collection</th>
<th>Date of Analysis</th>
<th>Lead Results (mg/l)</th>
<th>Year of Plumbing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 3
Making Changes to Sampling Site Locations

Make an assessment of your ability to sample a sufficient number of appropriate sites from your lead and copper plan well in advance of the monitoring period. Making contact with the resident early and determining whether their home still meets the selection criteria as a sample location will eliminate this variable. Furthermore, lead and copper samples should be collected early in the monitoring period to ensure samples arrive at the lab in a timely fashion and are analyzed well before the end of the monitoring period.

Changes to sampling sites are allowed when water systems can no longer gain access to the site or if the original site location no longer meets the Tier selection criteria. For example, if a home is vacant or demolished, if a softener is added or plumbing upgrades have been made - the structure no longer meets the Tier criteria.

This change in location must be submitted to the department using the Samples Site Identification and Certification/Change of Sampling Sites form provided on the next page.

Additional changes can also be made if you add new sampling sites provided they meet the requirements of a proper sampling location. It is advisable to submit a site change request before you take your routine lead and copper samples.

Your lead and copper plan must be updated whenever there is an addition or deletion of a site and you are also encouraged to update the plan to identify sites that meet the requirements of proper sampling locations that can be readily substituted if needed during future monitoring events.

Contact your DNR Water Supply Operations Section permit writer or DNR field office representative for a comprehensive list of sampling locations that have been used in the past.
PWSID # __________ NAME OF PUBLIC WATER SUPPLY: ______________

Month & Year Samples were collected: __________

SAMPLES SITE IDENTIFICATION AND CERTIFICATION

RESULTS OF MONITORING

Samples Required _____ # Samples Submitted _____ 90th Percentile Lead _____ mg/L

90th Percentile Copper _____ mg/L

CHANGE OF SAMPLING SITES

Original Site Address:
__
__

New Site Address:
__
__

Distance between Sites (approximately):
__

Targeting Criteria:

NEW: ___________________________ Tier _____

OLD: ___________________________ Tier _____

Reason for Change (attach additional pages if necessary):
__
__
__

SIGNATURE (name & title) Today’s Date: ___________________________
__

EPA Form 141-A, page 3

DNR Field Office _______
Reduced sampling sites shall be selected using the following procedure:

1. From the two most recent six-month rounds of testing, select the round of testing that had the OVERALL HIGHEST lead result.

2. Using the selected round, arrange the sampling sites in order, based on the lead test result, from highest to lowest.

3. Beginning with and including the site with the highest lead result, select and include every other site for reduced monitoring (i.e., highest result, 3rd highest, 5th highest, 7th highest, etc.).

4. After selecting every other site (see #3 above), if it is determined that a specific selected site can no longer be included in the sampling pool, replace the site with the next site on the original list (i.e., replace the 7th highest site with the 6th highest site).

5. This reduced sampling plan must be kept in your file for future reference. You must return to these same sites for each reduced sampling period.

If either the lead or copper action level IS EXCEEDED at the 90th percentile during any reduced monitoring period, you are required to conduct water quality parameter monitoring in accordance during the monitoring period in which the action level was exceeded, and resume standard or base monitoring for at least two consecutive six-month monitoring periods.
Section 4

Lead and Copper Consumer Notice and Certification Form

PWS Name: _______________ PWSID#: _______ Date: ___________

LEAD & COPPER CONSUMER NOTICE
ANALYTICAL RESULTS FOR LEAD & COPPER TAP WATER MONITORING

Our public water supply system is required to periodically collect tap water samples to determine the lead and copper levels in our system. Your residence was selected for this monitoring as part of our system’s sampling plan. This notice is provided to you with the analytical results of the tap water sample collected at your home.

Sample address: ___________________________ Sample collection date: __________

Analytical Lead result, in mg/L (milligrams per liter): __________

Analytical Copper result, in mg/L (milligrams per liter): __________

Definitions
Action Level (AL): The action level is a concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a public water supply system must follow. The lead action level is 0.015 mg/L. The copper action level is 1.3 mg/L.

Maximum Contaminant Level Goal (MCLG): The maximum contaminant level goal is the level of a contaminant in drinking water below which there is no known or expected risk to health. The MCLG allows for a margin of safety. The lead MCLG is zero. The copper MCLG is 1.3 mg/L.

What are the health effects of lead and how can I reduce my exposure?
If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. [NAME OF SYSTEM] is responsible for providing drinking water that meets all federal and state standards, but cannot control the variety of materials used in plumbing components.

When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using the water and using only cold water for drinking or cooking. Information on lead in drinking water and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/your-drinking-water/basic-information-about-lead-drinking-water.

When replacing your bathroom or kitchen faucet, consider a “lead-free” faucet that meets NSF/ANSI Standard 61 Annex G (California), which is less than 0.25% lead by weight.

What are the health effects of copper and how can I reduce my exposure?
Copper is an essential nutrient, but some people who drink water containing copper in excess of the action level over a relatively short period of time could experience gastrointestinal distress. Some people who drink water containing copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilson’s Disease should consult their personal doctor. Flushing your tap before using the water as previously described will also reduce copper levels.

Who can I contact at my water system for more information?
Phone number at our public water supply system: 251-578-1574
E-mail address at our public water supply system: jdavis@evergreenal.org

March 2016 Revision
Consumer Notice Instructions: Community PWS

Per the Lead & Copper Rule consumer notice requirements, you must complete the lead consumer notice, distribute the notice to each home or building that was tested with its specific lead result, and submit a certification of your activities and a copy of the notice to Iowa Department of Natural Resources (IDNR) at the address listed below.

Consumer Notice Content
You are required to provide the consumer notice to consumers who occupy homes or buildings that are part of your system’s lead & copper monitoring program with the analytical results when their drinking water is tested for lead, including those who do not receive water bills. The Consumer Notice must include the mandatory language in the example provided with these instructions. It must be multilingual, where appropriate.

Distribution of the Consumer Notice
Within 30 days of receiving the analytical results from the laboratory, you must provide the required notice to the people served at each residence or building that was a part of the sampling plan. IDNR recommends you provide the required notice as soon as available, especially if the result is elevated to allow the customer to take corrective actions in a more timely manner. This can be accomplished through direct mail, including it with the water utility bill, or by hand delivery.

Appendices

a) Sample Consumer Notification Completion Report
b) Sample Consumer Notice of Lead/Copper Result
c) Lead-Copper Customer Sampling Instructions
d) Sample Lead Public Education Notice
e) ADEM Regs Chapter 335-7-8
f) ADEM Regs Chapter 335-7-11 with sample monitoring violation notice
Monitoring of Corrosion Control Parameters
By Thomas S. DeLoach

If your water system exceeded a lead or copper action level in the past, you are required to monitor for corrosion control parameters. When a system exceeds a lead or a copper action level, the system is notified of the requirement to submit a corrosion control plan to the Department. This corrosion control plan should not only indicate the corrosion control method to be instituted, but should also outline the method for collecting the required corrosion control parameters.

Systems are given the discretion of choosing one of two methods for collecting corrosion control parameters which are listed below:

1. Systems using the Baylis Curve may demonstrate proper corrosion control by monitoring the treated water from each water source on a daily basis for pH and total alkalinity. Should the system utilize the Langelier Index or Ryznar Index for evaluating the corrosive level of the water, the treated water from each source must be monitored for pH and alkalinity daily and calcium, water temperature, and total dissolved solids on a weekly basis. Should an orthophosphate or silicate inhibitor be used, the system shall monitor pH on a daily basis and the phosphate or silicate level on a weekly basis for each treatment facility.

2. Systems could also choose to collect two samples from designated sites in the distribution system and two samples of finished water from each treatment facility. The number of distribution sites is based on the population served by the system (see chart below). These samples should be collected on two different days during each six-month monitoring period. The samples must be analyzed for pH, alkalinity, calcium, total dissolved solids and water temperature. Orthophosphate or silica must also be analyzed if a system uses a corrosion inhibitor.

<table>
<thead>
<tr>
<th>System Size (population)</th>
<th>Number of sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>greater than 100,000</td>
<td>25</td>
</tr>
<tr>
<td>10,001-100,000</td>
<td>10</td>
</tr>
<tr>
<td>3301-10,000</td>
<td>3</td>
</tr>
<tr>
<td>501-3300</td>
<td>2</td>
</tr>
<tr>
<td>25-500</td>
<td>1</td>
</tr>
</tbody>
</table>

After a system has begun corrosion control parameter monitoring, the system must ensure that the parameters are within specific ranges depending on the method being utilized to determine optimal corrosion control. The specific ranges and the methods are listed below:
Optimal Corrosion Control Indicator

Baylis Curve
Langelier Index
Rydnar Index
Calcium Carbonate Precipitation Potential

Baylis curve indicates no incrusting or corrosion will occur.
-1.0 to +2.0
7 to 11
4 to 10 mg/l

If a water system is unable to meet the indicator ranges or incurs an additional lead or copper action level exceedance, the system will be required to either submit a new corrosion control plan or conduct a full corrosion control study. We encourage all systems that have exceeded a lead or copper action level in the past to review their corrosion control parameter monitoring to ensure that the monitoring is being performed as required and submitted to the Department.

If you have any questions concerning the corrosion control parameter monitoring requirements, the requirements are outlined in Chapter 11 of the Water Supply Program regulations or you can contact me at (334) 271-7791.
Consumer Notification Completion Report

Lead and Copper Results Delivery Certification

PWS Name: ____________________________ PWSID: __________________

Population: _________________________

DELIVERY METHOD

Waterworks serving a population greater than 3,300 people:

☐ The occupants of each lead and copper sampling location were notified by U.S. Mail on ________________________ (date).

Waterworks serving a population of 3,300 or fewer people (choose either delivery method):

☐ The occupants of each lead sampling location were notified by U.S. Mail on ____________ (date).

☐ The occupants of each lead sampling location were notified by hand/direct delivery on ________________________ (date).

I certify that each residence from where lead and copper tap water samples were collected has been informed of their lead and copper monitoring results along with the following information: MCLGs, ALs and their definitions, a fact sheet on the health effects of lead which includes steps to reduce exposure to lead in drinking water, and contact information for the water utility. I further certify that notification was completed within 30 days after our system learned of the results from the Office of Drinking Water, and that if the residence is a rental property, both the occupant(s) and rental property owner were notified.

Signature: ____________________________ Print Name: ____________________________

Job Title: ____________________________ Phone: ____________________________ Date: ____________________________

☐ Complete this form.

☐ Attach a copy of the residence notification to this form.

☐ Within 90 days (three months) from the end of the monitoring period, mail this form to:

Alabama Department of Environmental Management
P. O. Box 301463
Montgomery, AL 36130-1463

ATTENTION: Ms. Laura Taylor
Consumer Notice of Lead Result in Drinking Water

Water Supply Name: ____________________________

County: ____________________________ WSSN: ____________________________

Sample Location: ____________________________ Date Sampled: ____________________________

Thank you for participating in the lead and copper monitoring of drinking water. The levels of lead and copper found at your location are in the table below.

<table>
<thead>
<tr>
<th>Key to Table</th>
<th>Contaminant</th>
<th>AL</th>
<th>MCLG</th>
<th>Your Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. ppb: parts per billion or micrograms per liter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead (ppb)</td>
<td>15</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper (ppb)</td>
<td>1300</td>
<td>1300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lead can cause serious health problems if too much enters your body from drinking water or other sources. It can cause damage to the brain and kidneys, and it can interfere with the production of red blood cells that carry oxygen to all parts of your body. The greatest risk of lead exposure is to infants, young children, and pregnant women. Scientists have linked the effects of lead on the brain with lowered IQ in children. Adults with kidney problems and high blood pressure can be affected by low levels of lead more than healthy adults. Lead is stored in the bones, and it can be released later in life. During pregnancy, the child receives lead from the mother’s bones, which may affect brain development.

To reduce exposure to lead in drinking water:

- **Run your water to flush out lead.** Run the water until it becomes cold.
- **Use cold water for cooking and preparing baby formula.** Do not cook with or drink water from the hot water tap; lead dissolves more easily in hot water.
- **Do not boil water to remove lead.** Boiling water will not reduce lead levels.
- **Look for alternative sources or treatment of water.** If your lead result is above 15 ppb, you may want to consider purchasing bottled water or a water filter. Read the package to be sure the filter is approved to reduce lead or contact NSF International at 800-NSF-8010, or www.nsf.org for information on performance standards for water filters.
- **Identify if your plumbing fixtures contain lead.** New faucets, fittings, and valves, may contain up to 0.25 percent lead including those advertised or labeled as “lead-free” and may contribute lead to drinking water. Consumers should be aware of this when choosing fixtures and take appropriate precautions.

Although the primary sources of lead exposure for most children are deteriorating lead-based paint, lead-contaminated dust, and lead-contaminated soil, the U.S. EPA estimates that 10 to 20 percent of human exposure to lead may come from drinking water.

For more information, contact us at: ____________________________.

For more information on reducing lead exposure around your home and the health effects of lead, visit the U.S. EPA’s Web site at www.epa.gov/lead, call the National Lead Information Center at 800-424-LEAD, or contact your health care provider.

Certification:

I certify that this public water supply has provided the consumer notice of lead result to persons served at each of the taps that was tested, either by mail or by another method approved by the DEQ, within 30 days of knowing the result. The Notice includes required content.

Signature ____________________________ Title: ____________________________ Date Sent to Consumer: ____________________________

Reminder to water supplier: Complete this certification on only one (1) example copy of a notice sent to a consumer and submit it to the DEQ.
Instructions for Completing Lead and Copper Report Form

1. WATER SUPPLY NAME: Enter the name of the public water supply where sampling is being conducted.

2. COUNTY: Enter the name of the county in which the public water supply is located.

3. WSSN: Enter the 5-digit public water supply serial number (e.g., 01234 or 40123).

4. POPULATION: Enter the number of people served by the public water supply.

5. MONITORING PERIOD: Enter the beginning and end dates of the monitoring period during which the sampling took place (e.g., from 06/01/2009 to 09/30/2009).

6. MINIMUM # OF SAMPLES REQUIRED: This number is according to the rules based on population or set by the DEQ for lead/copper tap sampling for this public water supply.

7. # OF SAMPLES TAKEN: Indicate the number of tap samples taken for lead and copper analysis in the monitoring period.

8. NAME OF CERTIFIED LABORATORY: Enter the name of the certified laboratory performing the lead/copper analyses on samples taken in the monitoring period.

9. SAMPLE CRITERIA: Answer the questions accordingly, briefly explaining, where necessary, the reason for your action.

10. NAME: Enter the name, title, and phone of the authorized water utility official and date.

11. TAP SAMPLING DATA: Enter the name of the public water supply and the WSSN. Complete the remainder of the sheet as follows:

 Sample Location: Enter the street address of the location where each lead and copper tap sample is taken.

 Date: Enter the date the tap sample was collected.

 Sample Category: Use the following numbers to designate the location criteria being met by the sample site:

<table>
<thead>
<tr>
<th>Sample Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Single family residence with lead service line.</td>
</tr>
<tr>
<td>2</td>
<td>Single family residence with lead solder copper piping constructed after 1982.</td>
</tr>
<tr>
<td>3</td>
<td>Single family residence with lead plumbing.</td>
</tr>
<tr>
<td>4</td>
<td>Multiple family residence (MFR) with either lead service line, lead solder copper piping constructed after 1982, or lead plumbing (when MFR comprise at least 20 percent of the total service connections).</td>
</tr>
<tr>
<td>5</td>
<td>Buildings with lead service lines, lead solder copper piping constructed after 1982, or lead plumbing.</td>
</tr>
<tr>
<td>6</td>
<td>Single family residence with lead solder copper piping constructed before 1983.</td>
</tr>
<tr>
<td>Other</td>
<td>If no Tier 1, 2, or 3 sites available, sample sites that use plumbing materials commonly found at other locations in the water supply.</td>
</tr>
</tbody>
</table>
Additionally, if lead service lines are present, tap samples must be taken from the following:

<table>
<thead>
<tr>
<th>50 percent from ...</th>
<th>AND 50 percent from ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>single family</td>
<td>single family residences with lead solder copper piping constructed after 1982</td>
</tr>
<tr>
<td>residences with lead</td>
<td>OR</td>
</tr>
<tr>
<td>service lines</td>
<td>single family residences with lead plumbing.</td>
</tr>
</tbody>
</table>

Tier 1 sites should be selected for sampling over Tier 2 or 3 sites even if all samples are from lead service lines or from residences with lead solder copper piping constructed after 1982.

Piping Materials: Designate the type of service line and building plumbing piping materials used at the location where the tap lead/copper sample was taken.

- C Copper
- G Galvanized
- L Lead
- P Plastic

Lead: Enter the concentration of lead in ppb (parts per billion) or µg/l (micrograms per liter) as reported by the certified lab.

Copper: Enter the concentration of copper in ppb or µg/l as reported by the certified lab.

Lab #: For lab purposes only, indicate a laboratory identification number or sample number.

12. CONSUMER NOTICE OF LEAD RESULT CERTIFICATION: Water supplies have until 3 months after the end of the monitoring period to submit the certification along with a sample copy of a notice sent to consumers to the appropriate DEQ district office. For district office addresses, visit www.michigan.gov/deq and click on Contacts. However, the DEQ encourages water supplies to send the sample notice and its certification (template available on page 4) along with the Lead and Copper Report (pages 1 and 2 of this form), which is due within 10 days after the end of the monitoring period.
IMPORTANT INFORMATION ABOUT LEAD IN YOUR DRINKING WATER

[Insert name of water system] found elevated levels of lead in drinking water in some homes/buildings. Lead can cause serious health problems, especially for pregnant women and young children. Please read this information closely to see what you can do to reduce lead in your drinking water.

Health effects of lead.
Lead can cause serious health problems if too much enters your body from drinking water or other sources. It can cause damage to the brain and kidneys, and can interfere with the production of red blood cells that carry oxygen to all parts of your body. The greatest risk of lead exposure is to infants, young children, and pregnant women. Scientists have linked the effects of lead on the brain with lowered IQ in children. Adults with kidney problems and high blood pressure can be affected by low levels of lead more than healthy adults. Lead is stored in the bones, and it can be released later in life. During pregnancy, the child receives lead from the mother's bones, which may affect brain development.

Sources of lead.
The main sources of lead exposure are lead-based paint and lead-contaminated dust or soil, and some plumbing materials. In addition, lead can be found in certain types of pottery, pewter, brass fixtures, food, and cosmetics. Other sources include exposure in the work place and exposure from certain hobbies (lead can be carried on clothing or shoes). Brass faucets, fittings, and valves, including those advertised as “lead-free,” may contribute lead to drinking water. EPA estimates that 10 to 20 percent of a person’s potential exposure to lead may come from drinking water. Infants who consume mostly formula mixed with lead-containing water can receive 40 to 60 percent of their exposure to lead from drinking water.

Steps you can take to reduce your exposure to lead in drinking water.
1. **Run your water to flush out the lead.** If water hasn’t been used for several hours, run water for 15 – 30 seconds or until it becomes cold or reaches a steady temperature before using it for drinking or cooking.
2. **Use cold water for cooking and preparing baby formula.** Lead dissolves more easily in hot water.
3. **Do not boil water to remove lead.** Boiling water will not reduce lead levels.
4. **Look for alternative sources or treatment of water.** You may want to consider purchasing bottled water or a water filter. Read the package to be sure the filter is approved to reduce lead or contact NSF International at 800-NSF-8010 or www.nsf.org for information on performance standards for water filters.
5. **Test your water for lead.** Call us at [insert phone number for your water system] to find out how to get your water tested for lead. [Include information on your water system’s testing program. For example, do you provide free testing? Are there laboratories in your area that are certified to do lead in water testing?]
6. **Get your child tested.** Contact your local health department or healthcare provider to find out how you can get your child tested for lead, if you are concerned about exposure.
7. **Identify if your plumbing fixtures contain lead.** Brass faucets, fittings, and valves, including those advertised as “lead-free,” may contribute lead to drinking water. The law currently allows end-use brass fixtures, such as faucets, with up to 8% lead to be labeled as “lead-free.” Visit NSF International’s Web site at www.nsf.org to learn more about lead-containing plumbing fixtures.
[Insert information on how and when the exceedance was discovered in your community and provide information on the source(s) of lead in the drinking water, if known.]

[Insert information about what your water system is doing to reduce lead levels in homes in your community.]

For more information, call us at [insert your telephone number]. [(If applicable), or visit our Web site at [insert your web site here]]. For more information on reducing lead exposure around your home/building and the health effects of lead, visit EPA's Web site at www.epa.gov/lead or contact your healthcare provider.